why important the brain science
In fact, it has spawned a whole new industry. Three hot neurotech areas that promise major changes in brain research in the near future are neuroimaging, neuropharmacology, and neurodevices such as brain implants. And they are thriving. The Neurotechnology Industry Report for 2008 shows 2 billion people worldwide suffering from a brain-related illness, with an annual economic burden of more than $2 trillion. Globally, in 2008, more than 550 public and private companies participated in a neurotech industry where revenues rose 9 percent to $144.5 billion overall, with neuropharmaceuticals reporting earnings of $121.6 billion, neurodevices revenues of $6.1 billion, and neurodiagnostics revenues of $16.8 billion.
The military has a hefty investment in this as well. Neurotechnology and research will help the thousands of soldiers returning from wars with severe brain injuries or missing limbs. Advances will also perfect the toolbox for warfare. Neuroenhancers will keep soldiers and fighter pilots awake and alert for days, and will fine-tune and juice up mental focus and reflexes. Brain-machine interfaces could create new weapons and allow exploration into deep space and other hostile territory. And neuroimaging could allow us to see into brains to predict and possibly control behavior and thoughts.
How your brain works the short version
A refresher on brain basics will help set the context for the detailed chapters that follow. Your brain is three pounds of flesh, nerves, and fluid that looks like a big walnut but is much softer. Its billion or so specialized cells called neurons communicate and form networks through chemicals (especially those called neurotransmitters) and minuscule electrical charges that pass over the tiny gaps, or synapses, between them. The overall brain is often described in three parts: the primitive brain, the emotional brain, and the thinking brain.
The primitive brain
the brain stem or hindbrainsits at the top of the spine and takes care of the automated basics, such as breathing, heartbeat, digestion, reflexive actions, sleeping, and arousal. It includes the spinal cord, which sends messages from the brain to the rest of the body, and the cerebellum, which coordinates balance and rote motions, like riding a bike and catching a ball. Above this, your brain is divided into two similar, but not identical, hemispheres connected by a thick band of fibers and nerves called the corpus callosum. Each side functions slightly differently than the other does, and for reasons not yet understood, the messages between the hemispheres and the rest of our body crisscross, so that the right brain controls our left side and vice versa.
The emotional brain
The emotional brain, or limbic system, is tucked deep inside the bulk of the mid brain and acts as the gatekeeper between the spinal cord and the thinking brain in the cerebrum above. It regulates survival mechanisms such as sex hormones; sleep cycles; hunger; emotions; and, most important, fear, sensory input, and pleasure. The amygdala is our sentry, the hippo campus is the gateway to short-term memory, and the hypothalamus controls your biological clock and hormones, while the thalamus passes along sensory information to the thinking centers in the cortex above. The basal ganglia surround the thalamus, and are responsible for voluntary movement. The so-called pleasure center, or reward circuit, is also based in the limbic system, involving the nucleus accumbens and ventral tegmental area.
the thinking brain
The thinking brain the part we usually see when we picture a brain and what is sometimes called the crown jewel of the body—sits on the top, where it controls thoughts, reasoning, language, planning, and imagination. Vision, hearing, speech, and judgment reside here as well. But let's be honest. In spite of enormous research advances, scientists still have a pretty rudimentary understanding of brain function and how it relates to your thoughts, feelings, and actions. There are frequent announcements about how the sources of some emotions and functions have been "mapped" in the brain, but most of these should be qualified: brain researchers are still trying to figure out much of what goes on between your ears. But they're gaining on it.
No comments:
Post a Comment